Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase.

نویسندگان

  • Aaron T Fafarman
  • Paul A Sigala
  • Jason P Schwans
  • Timothy D Fenn
  • Daniel Herschlag
  • Steven G Boxer
چکیده

Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pK(a) prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pK(a) near 7 was included. UV-absorbance and (13)C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct measurement of the protein response to an electrostatic perturbation that mimics the catalytic cycle in ketosteroid isomerase.

Understanding how electric fields and their fluctuations in the active site of enzymes affect efficient catalysis represents a critical objective of biochemical research. We have directly measured the dynamics of the electric field in the active site of a highly proficient enzyme, Δ(5)-3-ketosteroid isomerase (KSI), in response to a sudden electrostatic perturbation that simulates the charge di...

متن کامل

Comment on “Extreme electric fields power catalysis in the active site of ketosteroid isomerase”

Fried et al. (Reports, 19 December 2014, p. 1510) demonstrated a strong correlation between reaction rate and the carbonyl stretching frequency of a product analog bound to ketosteroid isomerase oxyanion hole mutants and concluded that the active-site electric field provides 70% of catalysis. Alternative comparisons suggest a smaller contribution, relative to the corresponding solution reaction...

متن کامل

BIOPHYSICS. Comment on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

Fried et al. (Reports, 19 December 2014, p. 1510) demonstrated a strong correlation between reaction rate and the carbonyl stretching frequency of a product analog bound to ketosteroid isomerase oxyanion hole mutants and concluded that the active-site electric field provides 70% of catalysis. Alternative comparisons suggest a smaller contribution, relative to the corresponding solution reaction...

متن کامل

Extreme electric fields power catalysis in the active site of ketosteroid isomerase.

Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field ...

متن کامل

BIOPHYSICS. Response to Comments on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

Natarajan et al. and Chen and Savidge comment that comparing the electric field in ketosteroid isomerase's (KSI's) active site to zero overestimates the catalytic effect of KSI's electric field because the reference reaction occurs in water, which itself exerts a sizable electrostatic field. To compensate, Natarajan et al. argue that additional catalytic weight arises from positioning of the ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 6  شماره 

صفحات  -

تاریخ انتشار 2012